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Abstract 

A kernel function can change linearly inseparable vectors into linearly separable vectors by 

mapping the original feature space into another feature space. But the dimension of the new 

feature space is usually several times of the original feature space, which results in a more 

computational complexity. This paper aims at introducing a Dirichlet probability distribution 

kernel based on whitening transformation which is called DPWT kernel function for short. The 

DPWT kernel function first mapping feature vectors of the original feature space into new vectors 

of another same dimension feature space, and then classifies new vectors in the new feature space 

so as to achieve the purpose of classifying original feature vectors. The DPWT kernel doesn’t 

augment the dimension of the new feature space. What’s more, the DPWT kernel can effectively 

eliminate the correlation between vectors, and reduce the redundancy of data which can further 

improve the accuracy of classification. In this paper, we use the DPWT kernel and other five 

commonly used kernels on the three benchmark datasets (VOC2007, UIUCsport and Caltech101) 

for image classification experiments. Experiments show that the DPWT kernel exhibits superior 

performances compared to the other state of the art kernels.  
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1. Introduction 

The study of kernel functions has caused a boom in image classification. People usually use 

a high efficiency and low cost linear classifier for image classification. But feature vectors are 

linear inseparable in low dimensional space. According to recognition theory, the low 

dimensional linear inseparable vectors can become linear separable in the high dimensional 

feature space by kernel functions. Radial basis kernel (RBF) function is a common kernel 

function, and many scholars have made a deep research on the RBF kernel function. Rahimi uses 

a positive definite shift-invariant kernel to approximate the RBF kernel function, which further 

improves the performance of the RBF kernel function [1]. Vempati uses the display features to 

map the RBF kernel function, which makes a trade-off between the high computation complexity 

and high classification accuracy [2]. Additive kernels are also commonly used kernel functions, 

and the additive kernels include an Intersection kernel [3], a Homker kernel and a Hellinger 

kernel [4]. Perronnin proposes that simply obtain the square-root of the feature vectors can lead to 

large improvements, and the step perfect interprets the basic principles of the Hellinger kernel 

function [5]. In order to compare the effectiveness of additive kernels, Vedaldi proposes a unified 

framework for all additive kernels [6]. That framework can use a closed form express all common 

kernels and experiments show that the performance of the Homker kernel is the best. In order to 

adapt to a wide range of data samples, Guillaumin proposes a multiple kernel learning (MKL) for 

image classification [7]. The method can effectively eliminate the noise samples and improves 

the classification accuracy of samples. In order to increase the discriminative power of an object 

categorization method, it is effective to model the intra category diversity and the inter category 

correlation among images. According to that idea, Yang introduces a group-sensitive multiple 

kernel learning method to accommodate the diversity and the correlation, the experiments show 

that the group-sensitive multiple kernel learning method has achieved quite good performance in 

three challenging datasets [8]. In order not to be limited by the performance of the existing kernel 

function, Tom proposes a gene kernel function [9], the gene kernel function shows better 

performance compared with the polynomial kernel function, the gauss kernel function and the 

sigmoid kernel function. Chen proposes a concept of an inner double kernel and the kernel in that 

inner double kernel function can be arbitrary kernel function [10]. The handwritten recognition 
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rate of the inner double kernel function is higher than the Gaussian kernel function and 

polynomial kernel function. Ionescu proposes a new kernel function that is called PQ kernel [11]. 

The PQ kernel defines the number of concordant pairs between two vectors is P. In the same way, 

the number of discordant pairs is Q. Experiment shows that the PQ kernel which combined with 

the JS (Jensen-Shannon) kernel can further improve the image classification accuracy. Wang 

proposes a fast stochastic intersection kernel machine training algorithm (SIKMA), the method is 

more effective than the linear kernel in image matching, retrieval and classification [12]. 

Considering the computational complexity of the kernel functions will be very high, Chang 

proposes a probability integral kernel as the similarity measure of vectors and experiments show 

that the probability integral kernel reduced the computing time dramatically [13].  

Although many people use kernel function to measure the similarity between feature vectors 

[14][15][16], but compared with the original features, the kernel function increased feature 

space’s dimension after mapping features, and add the computational complexity. In order to 

solve that problem, we introduce a dirichlet probability distribution kernel based on whitening 

transformation which is called DPWT kernel function for short. The main purpose of the DPWT 

kernel function is to map the feature vectors of the original feature space into new vectors of 

another feature space which has a same dimension, and then classify new vectors so as to achieve 

the purpose of classifying original feature vectors. The DPWT kernel function not only keeps the 

same dimension between the new feature space and the original feature space, but also effectively 

eliminates the correlation between the dimensions and reduces the data redundancy. 

In this paper, we introduced the basic concept of whitening transformation at first, and then 

the Dirichlet probability distribution kernel (DPWT) based on whitening transformation is 

introduced in detail. Finally, the validity of DPWT kernel function on image classification is 

verified on VOC2007, UIUCsport and Caltech101 datasets. 

 

2. Foundations of the DPWT kernel 

The whitening transformation is a kind of decorrelation linear transformation, which can 

transform a d  dimension vector J(x) whose mean is  and covariance matrix is G into a new 
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random vector z(x).  

   Z x AJ x                                            (1) 

where the dimension of vector z(x) is also d, and the covariance matrix of vector z(x) is the unit 

matrix, A represents a whitening vector that satisfies the condition A
T
A=G

-1
. The covariance 

matrix of vector z(x) is a unit matrix, so the random variables of the vector are irrelevant, and the 

variance of all random variables is 1, so the whitening transform can effectively eliminate the 

correlation between vectors, and reduce the redundancy of data. There are many kinds of 

whitening transformations, in this paper, we choose the simplest Mahalanobis whitening 

transform [17]. 

The mean of gradient vector H(x) of the ln-likelihoo                                                                                                                                                                                                                                                                                                        

d function for any probability distribution is: 
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 1 2, ,...,
T

W     is the distribution parameter when the Dirichlet probability 

distribution ( , )p x    have the max ln-likelihood function. 

The covariance matrix of vector  H x is: 

             
T

TG E H x E H x H x E H x E H x H x                
                 (3) 

According to the definition of the Mahalanobis whitening transformation, for any vector 

H(x) whose mean value is 0 and the covariance matrix is G, the vector (x) after whitening 

transformation is defined as the following form: 
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   1 2x G H x                                                                              (4) 

In order to verify the applicability of Mahalanobis whitening transformation to this paper, 

we calculate the expectation and covariance matrix of vector (x) according to formula (5) and 

formula (6), 

     1 2 1 2 0E x E G H x G E H x                                            (5) 
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By the definition of covariance matrix, we can know that G is a semi positive definite 

symmetric matrix, so there is a positive definite symmetric square root 1 2G can make sure 

G
1/2

G
1/2

=G. 

  Cov x I                                                     (7) 

where I represents the unit vector. By formula (5) and formula (7), we can know that the 

expectation of the vector (x) is 0, and the covariance matrix of the vector (x) is the unit 

matrix. Therefore, in order to effectively eliminate the correlation between vectors, and reduce 

the redundancy of data, we can carry out the whitening transformation of the gradient vector 

H(x). 

 

3. DPWT kernel 

The main idea of the DPWT kernel function is to map the feature vector x, y
 
of the original 

feature space into vector(x), (y)of the new feature space, and then classify new vectors so as 

to achieve the purpose of classifying original feature vectors. 

We use Dirichlet probability distribution to get better gradient vector H(x).Given a feature 

vector x=[x1, x2,…, xw]
T
, the formula of Dirichlet probability distribution is: 
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Where w is a feature dimension which is equal to the number of parameters of the model.  

 1 2, ,..., W   


  denotes model parameter.
 

   1

0
1 !t te dt  


     ,  indicates a 

gamma function. 

The DPWT kernel function is defined as: 

             
1 1

12 2, , , T

DPWTK x y x y G H x G H y H x G H y
                     (9) 

where vector (x) and vector (y) are obtained by whitening transformation.
 
H(x) is the gradient 

vector of the ln-likelihood function of Dirichlet probability distribution, where  expresses the 

derivation of . 
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since 
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where
 
is a digamma function,  1

W

ii
 

 ,  ln x and    are all input functions, and WR1 is a vector 

which all elements are 1. The covariance matrix of the formula (9) can be obtained by formula 
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(13): 

'

1
( , )[ ln ( , )][ ln ( , )] { ( )} ( )

W

ii
G p x p x p x dx diag B       


                (13) 
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                                                     (14) 

diag(.) is the diagonal matrix which is generated from the input vectors. ’ is a trigamma 

function. B is a square matrix which elements are all 1, and the dimension of B is ww. G  is a 

constant vector and the value of G has nothing to do with x  and y . 

 The DPWT kernel function can be further written as: 
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We set 
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Therefore, the DPWT kernel function can be rewritten as: 

     1, [ln ] [ln ]T

DPWTK x y x G y                                 (17) 

According to the the formula (17), we can see that the value of the DPWT kernel function is 

closely related to the value of ln(x) and ln(y). 

 

4. Parameter Optimization 

The Ln function is very important for the DPWT kernel function. It should be noted that 

ln(x)  when x0 , at this point, the kernel function is obviously unreasonable, so we modify 

ln(x) to ln(x+f) using small parameter f<<1. The optimized DPWT kernel function is: 

   
1
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The basic problem of support vector learning (SVL) is the selection of kernel function and 

kernel parameters, now we further study the modified parameters f in the formula (18). 

Assume that the parameters i 
are not affected by the change of parameters i, we give the 

marginal distribution of Dirichlet distribution by Beta distribution, as shown in formula (19): 
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m=i, n=0-i. First, the variable v= ln(x) is used to instead of the variable x to optimize the 

formula (19) into a formula (20): 
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And then according to the variable transformation formula U=ln{exp(v)+f}, the ln(x) is 

optimized to be written in the form of ln(x+f), as shown in the formula (21): 
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Function ln(x+f) acts on the following two aspects: on the one hand, it is roughly removed 

the ln(x) in the x f  and only keep ln(f).The tiny histogram value is treated as 0, which enhances 

the difference between the appropriate small x , like a local contrast enhancement, which reflects 

the negative example theory [17]. At the same time, by determining the value of f, U= ln(x+f) 

forms a smooth distribution on the top of ln(f), and it can keep a smooth distribution state around 

the distribution mode. During the process of determining f, too small f pushes the lower boundary 

ln(f) away from the distribution pattern, which exaggerates the negative example theory. On the 

other hand, The larger the f will merge the low boundary ln(f) with the distribution pattern, which 

is contrary to the theory of negative examples. So, the suitable f can show the smooth distribution 

between the distribution pattern and the low boundary ln(f). 

In order to get the appropriate f, we define f based on the cumulative percentage of the 

empirical distribution, we usually set the cumulative percentage of 25%, the optimization 

parameter f=p
-1

(0.25)0.001, which    
0

f

P f p x dx  . 

Assuming that the dimension of the original feature vector x is w1, then the feature vector 

(x) after the DPWT kernel function mapping has the following form: 

       
1 2

1 2 '

1
{ ( )} ( ) ln

W

ii
x G H x diag B x f     





                          (22) 

According to the formula (22), we can see that the dimension of vector (x) is still w1, so 

the dimension of the feature space after the DPWT kernel function mapping is consistent with the 

original feature space. 

 

5. Experiments 
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In this paper, we use three datasets (VOC2007 dataset, UIUCsport dataset and Caltech101 

dataset) to carry out the image classification experiments. Several state of the art kernels 

(Homker[6], JS+PQ[11], SIKMA[12], MKL[7], Linear) were compared with the DPWT kernel 

on the three datasets. Our image classification is performed using a PC with an Intel Core 7-3770 

CPU, 3.4 GHz, 8 GB RAM, and the algorithm is developed using MATLAB R2014a and 

GCC4.6 compiler under an Ubuntu12.04 (64-bit) operating system. 

 

5.1. Dataset 

In order to make experiments more diversity, we choose VOC2007 dataset, UIUCsport 

dataset and Caltech101 dataset for image classification. Our first set of experiments is on 

VOC2007 dataset and VOC2007 dataset is composed of color images with multi labels. 

VOC2007 dataset contains 9963 images and includes 24640 annotated objects. The VOC2007 

dataset is divided into 20 categories (Aeroplane, Bicycle, Bird, Boat, Bottle and so on), each of 

which contains 193~4015 images. What’s more, a large number of images are medium resolution 

(500*333 pixels). We use an identical experimental setup as Chatfield [18], and about 50% 

images of the dataset are used for training/validation samples and others for testing samples. 

UIUCsport dataset is selected as the second dataset in our experiments and UIUCsport dataset is 

composed of color images with a single label. UIUCsport dataset contains 8 categories (rowing, 

badminton, polo, bocce, snowboarding, croquet, sailing, rock climbing) which are all sports 

event. There are 1579 images in the dataset and there are about 200 images in each category. For 

each category, we randomly selected 70 images for training and 60 for testing. The third dataset 

is Caltech101 and Caltech101 is composed of color and gray images. There are 9144 images in 

Caltech101 dataset and these images are distributed into 102 categories (101 object categories 

and a background category), each of which contains 40~800 images. Furthermore, each image of 

the dataset is about 350 x 200 pixels. For each category, we select 15 random images for training 

and test on the rest. 

 

5.2. Procedure 

In this paper, the training samples and test samples of each data set need four steps: feature 

extraction, feature clustering, feature coding, and histogram formation, then the training samples 
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are input into the SVM model to determine the decision function of the model, the test samples 

are input into the SVM model to get the type of each image in the test sample. The 

parameterbetween training samples and test samples are same in the four steps, for the sake of 

simplicity, we use the training sample to illustrate the parameters of the four steps. The first step, 

using SIFT dense sampling methods on three data sets of training images for feature extraction, 

Then, 1000000 feature points are randomly selected from the feature points extracted from each 

data set, which is used for feature clustering. The second step, the K mean algorithm is used to 

cluster the feature points of the three data sets into 3000 feature types, and the number of 

iterations is set to 150.The third step, we use KCB coding to encode the features, in order to 

improve the efficiency of the computation, each feature is encoded by considering five visual 

words which are closest to their own [20].The fourth step, we using spatial Pyramid model to 

form visual word histogram for each image, the image is divided into 3 layers, the three layer 

includes 1*1, 3*1 (three horizontal strips), and 2*2 (four quadrants) bins, for a total of 8 bins 

[19].The fifth step, The histogram vector of the training image is input into the SVM model to 

complete the training of the SVM model, and then test the image input to the SVM model to get 

the category of each image, complete the SVM model test. We choose the DPWT kernel 

(optimization parameter set to 0.001) and other five kernels (Homker, JS+PQ, SIKMA, MKL, 

Linear) for SVM model in image classification. We set the penalty parameter to 7.6, which 

expresses the tolerance of the misclassified data items. What’s more, we use the one-versus-rest 

principle to put the feature vectors of the testing images into SVM to get categories of the testing 

images [19]. Specific steps are as follows: first set the first class of the data set as a positive 

sample, all other categories are negative samples, then each test image is input into the SVM 

model to calculate the value of the decision function, if the value of the decision function is 

greater than 0, indicates that the test image is a positive sample, otherwise it is a negative sample, 

then take the next category as a positive sample, and all the other categories as negative samples, 

continue to run the decision function until all categories as a positive sample. 

In this paper, there are two experimental evaluation index, according to PASCAL 

VOC2007's official statement: accuracy / recall curve is more intuitive and more sensitive to the 

performance evaluation than the receiver operating characteristic curve. In this paper, we use the 

http://fanyi.baidu.com/#zh/en/_blank
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mAP value of a method on a given set of data indicates the average accuracy of the method in all 

categories, if a mAP value is high, then the classification performance is better. The PR curve is 

another indicator of the experiments in this paper, we utilize the PR curve to analyze the 

classification performance of different methods. If the PR curve of a certain method is closer to 

the upper right corner, the classification performance of the method is better. To obtain reliable 

results, we repeated the experimental process 5 times for each method. 

 

5.3. Experiments Results 

Table 1 and table 2 show the average precision for each category of six methods (DPWT, 

Homker, JS+PQ, SIKMA, MKL, Linear) respectively on VOC2007 and UIUCsport datasets, 

furthermore, the highest average precision for each category is in bold. There are 102 categories 

in Caltech101 dataset, so we do not list the average precision for each category one by one. We 

just give the mean average precisions (mAPs) of six methods (DPWT, Homker, JS+PQ, SIKMA, 

MKL, Linear) on Caltech101 dataset in table 3. We select four categories of the highest 

classification accuracy on Caltech101 dataset in figure 1. What’s more, we select four categories 

of the lowest classification accuracy on Caltech101 dataset in figure 2. 

From table 1, table 2, and table 3, we can clearly see that the mAPs of five kernels were well 

above the mAP of the baseline linear kernel. What’s more, in table1 and table 2, the mAP of the 

DPWT kernel in most of the categories is better than other kernels. In VOC2007 dataset, the 

DPWT kernel has obtained the best results for 19 out of 20 categories. In UIUCsport dataset, the 

DPWT kernel has obtained the best results for 7 out of 8 categories. To be concrete, in Tvmonitor 

category of VOC2007 dataset, the mAP of the DPWT kernel is 0.3194 above the mAP of the 

JS+PQ kernel, 0.2311 above the mAP of the SIKMA, 0.2105 above the mAP of the MKL method 

and 0.1885 above the mAP of the Homker kernel. In badminton category of UIUCsport dataset, 

the mAP of the DPWT kernel is 0.2672 above the mAP of the JS+PQ kernel, 0.1575 above the 

mAP of the SIKMA, 0.0816 above the mAP of the MKL method and 0.0624 above the mAP of 

the Homker kernel. 

Table 1. Performance on VOC2007 

Category  Linear JS+PQ SIKMA MKL Homker DPWT 

Aeroplane 0.5587  0.6236  0.6330  0.6431  0.6634  0.6672  
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Bicycle 0.3185  0.3880  0.4454  0.4918  0.5034  0.5180  

Bird 0.1706  0.2775  0.3054  0.3506  0.3583  0.3592  

Boat 0.4912  0.5309  0.5851  0.5933  0.5755  0.5942  

Bottle 0.1141  0.1529  0.1581  0.2471  0.2454  0.2535  

Bus 0.3233  0.4177  0.4812  0.5607  0.5323  0.5619  

Car 0.5675  0.6339  0.6707  0.7105  0.7187  0.7244  

Cat 0.3072  0.3954  0.4287  0.4739  0.4690  0.4743  

Chair 0.3434  0.4254  0.4361  0.4533  0.4532  0.4646  

Cow 0.1300  0.2827  0.2948  0.2702  0.3120  0.2929  

Diningtable 0.2686  0.3009  0.3439  0.4065  0.4356  0.4492  

Dog 0.1927  0.2915  0.3273  0.3520  0.3621  0.3683  

Horse 0.6277  0.6675  0.6939  0.7337  0.7476  0.7503  

Motorbike 0.2926  0.4256  0.4949  0.5620  0.5903  0.5996  

Person 0.6326  0.7186  0.7575  0.7931  0.7939  0.8009  

Pottedplant 0.0914  0.1406  0.1913  0.2078  0.2161  0.2238  

Sheep 0.1388  0.2945  0.3343  0.3388  0.3602  0.3655  

Sofa 0.2317  0.2953  0.3621  0.3916  0.3845  0.4093  

Train 0.5603  0.5934  0.6656  0.7034  0.7132  0.7168  

Tvmonitor 0.2463  0.2802  0.3685  0.3891  0.4111  0.4367  

mAP 0.3304  0.4068  0.4489  0.4836  0.4923  0.5015  

 

Table 2. Performance on UIUCsport 

Category  Linear JS+PQ SIKMA MKL Homker DPWT 

rowing  0.8925  0.8740  0.9029  0.9109  0.9150  0.9186  

badminton  0.4145  0.3517  0.4614  0.5373  0.5565  0.6189  

polo  0.6434  0.8181  0.8263  0.7465  0.7859  0.8086  

bocce  0.7966  0.8441  0.8584  0.8966  0.9195  0.9208  

snowboarding  0.9139  0.9280  0.9327  0.9472  0.9632  0.9774  

croquet  0.5734  0.5699  0.5451  0.5678  0.5876  0.6268  

sailing  0.6450  0.9105  0.9496  0.9609  0.9890  0.9955  

rock climbing 0.7501  0.7782  0.8178  0.8515  0.8835  0.9095  

mAP 0.7037  0.7593  0.7868  0.8023  0.8250  0.8470  

 

Table 3. Performance on Caltech101 

Method Linear JS+PQ SIKMA MKL Homker DPWT 

mAP 0.4232 0.5286 0.5807 0.584 0.6306 0.6576 

 

           

  car_side (100%)   Motorbikes (99.96%)   pagoda (100%)   trilobite (100%) 

Fig. 1 Four categories of the highest classification accuracy on Caltech101 dataset 
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   Beaver (17.91%)   crocodile (20.76%)  platypus (20.20%)  wild_cat (12.00%) 

Fig. 2 Four categories of the lowest classification accuracy on Caltech101 dataset 

What’s more, Precision/Recall (PR) analysis gives more intuitive and sensitive evaluation 

than the ROC analysis. So we choose PR analysis to evaluate the performance of different 

kernels. We draw the PR curves of the six kernels in figure 3, figure 4, and figure 5. DPWT 

kernel depicted in red line, Homker kernel depicted in cyan line, JS+PQ kernel depicted in blue 

line, SIKMA method depicted in magenta line, MKL method depicted in green line and Linear 

kernel depicted in black line. 

 

Fig. 3 The PR curves of six kernels on VOC2007 dataset 

 

Fig. 4 The PR curves of six kernels on UIUCsport dataset 
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Fig. 5 The PR curves of six kernels on Caltech101 dataset 

From the PR curves of VOC2007 dataset, it can be seen clearly that DPWT kernel is better 

than other five methods. On Caltech101 and UIUCsport datasets, the DPWT kernel has an 

excellent PR curve again. In terms of the PR curves, five kernels are obvious better than the 

baseline linear kernel. The MKL kernel combines an RBF kernel and a linear kernel for image 

classification, so it obtains a pretty good PR curve. However, the RBF kernel function is very 

sensitive to parameters, so the PR curve is lower than the Homker kernel function which is not 

affected by the parameters. The SIKMA kernel function is not only sensitive to the parameters, 

but also only takes into account the similarity between the original vectors, so the PR curve is 

slightly lower than the MKL kernel function. JS+PQ kernel function is related to the number of 

concordant and discordant pairs between two vectors, so it has a limited description and a poor 

PR curve. 

As can be seen in table 4, the training time of six kernels were measured in seconds. The 

classification accuracy of linear kernel function is the lowest, and the training time is the shortest. 

SIKMA kernel combines a stochastic learning method with an intersection kernel, so the 

complexity of calculation is lower than a tradition intersection kernel. According to the 

formulation (22), the DPWT kernel has not improved the feature dimension, so it has a low 

computational complexity. The Homker kernel increases the feature dimension from 1W to 7W , 

so it increases the computation time. The JS+PQ kernel need to calculate the number of 

concordant and discordant pairs between two vectors, so the computation complexity is very 
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high. Because the MKL kernel requires multiple kernel matrices in the operation, the 

computational complexity is high. From table 4, the computational complexity of the DPWT 

kernel is smaller than Homker’s, JS+PQ’s and MKL’s. Despite training time of the DPWT kernel 

is higher than the Linear and SIKMA kernel, the DPWT kernel has made great progress in 

precision.  

Table 4. The training time for six kernels on three dataset 

  Linear SIKMA DPWT Homker JS+PQ MKL 

VOC2007 46.70 96.22 149.05 961.45 5185.07 7374.96 

UIUCsport 3.90 10.98 17.18 106.50 576.02 819.66 

Caltech101 15.30 27.83 50.54 320.64 1710.23 2449.74 

 

6. Conclusion and Further Work   

This paper presents a new kernel, a dirichlet probability distribution kernel based on 

whitening transformation, which we called it as the DPWT kernel. Fair experiments using three 

benchmark datasets (VOC2007, UIUCsport and Caltech101) were carried out on six methods 

(DPWT, Homker, JS+PQ, SIKMA, MKL, Linear). From the experiments we conclude the 

following results. The mAP of the DPWT kernel is higher than the mAPs of other five kernels on 

three datasets. In terms of the computational time, the DPWT kernel is shorter than kernels 

(Homker, JS+PQ and MKL) and a little longer than the SIKMA kernel. On the one hand, the 

DPWT kernel improves the classification precision without increasing the feature dimension. On 

the other hand, the DPWT kernel can effectively eliminate the correlation between vectors, and 

reduce the redundancy of data. In future work, we will optimize the DPWT kernel algorithm and 

thoroughly study the optimization parameter of the DPWT kernel function. Furthermore, we will 

use a TF-IDF measure for features and eliminate the features which have a low TF-IDF score. 
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